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ABSTRACT

An anisotropic viscoplasticity model is developed as an extension of the well

known Bodner model. The extension is made by replacing the effective stress of the

isotropic Bodner model by one involving invariants for transverse isotropy. The resulting

model retains the simplicity of Bodner's in the ease with which the material constants are

determined experimentally. It allows a representation of strong initial anisotropy yet is

based on a scalar state variable under the assertion that induced anisotropy is negligible

relative to the strong initial anisotropy. Temperature dependence is taken as in the original

Bodner theory. Account is made of fiber volume fraction through nonlinear rules of

mixture applied to the stress history and anisotropy parameters. Focus is on the theoretical

development of the model, however, application to a W/Cu composite is in progress and

will be reported as a sequel to this report.

INTRODUCTION

Bodner's model ofviscoplasticity [ 1,2 ] is one of several unified models that has

received attention over the past decade. It was one of two models that was focused on

under the extensive HOST program sponsored by NASA. In its earliest form, Bodner's

model applies to initially isotropic materials and incorporates a single scalar state variable.

In the terminology of continuum mechanics, such a model is labeled isotropically

hardening. A major strength of the early Bodner model is its simplicity and the relative

ease with which the material parameters can be determined through experiment.

The objective here is to develop a simple and tractable transversely isotropic

model, applicable to metallic composites, by extending the well established Bodner model.

This is accomplished, in part, by replacing the effective stress 3_2 upon which the

isotropic Bodner model is based with another effective stress defined in terms of invariants

reflecting local transverse isotropy. Identification of an appropriate set of invariants for

transverse isotropy was made by Robinson and Duffy [ 3 ]. The resulting model, capable

of representing strong initial anisotropy, retains its dependence on a single scalar state

variable. It is argued that induced anisotropy (e.g., through directional or kinematic

hardening) is negligible relative to the strong initial anisotropy.



The anisotropic, viscoplasticity model developed here, like the isotropic Bodner

model, is effective in representing rate-sensitive, non isothermal plastic responses typical

of the histograms of rocket engines, the space-shuttle main engine (SSME) being a

prominent example. Temperature dependence is taken as in the original Bodner model.

Influence of the fiber/matrix volume fraction p is included by considering the internal

variable (or stress history parameter) Z and the anisotropy parameter 4" to functionally

depend on p.

Here, emphasis is on the theoretical development of the anisotropic model.

Several plots analogous to those in [ 2 ] are shown illustrating general features of the

anisotropic theory. An application of the model is in progress to a W/Cu composite for

which tensile (and creep) data are available over a range of temperatures and strain-rates

and two volume fractions. The resulting material constants and parameters for the W/Cu

composite will be reported in a sequel to this report.

ISOTHERMAL STATEMENT OF THE MODEL

We first state the multiaxial form of the transversely isotropic model under

isothermal conditions at a reference temperature To and for a reference fiber volume

fraction Pp. The flow law is

k,, 3 [ If Z Vq

ox L (1)
and the evolution law is

2=m(Z,-Z)W IV = F#.g'_ (2)

in which k o. are the components of inelastic strain rate, _ is the effective stress

_= _3(I1+(1-_)I2 +3 (1-013)

and Z is the internal state variable (stress history parameter).

The invariants I_,I 2 and I 3 in (3) are defined as
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also,

and
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s0. are the components of deviatoric stress, D 0. are components of an orientation tensor, cf

[ 3 ], ko,n,m,Z, and Z o (the initial value of Z) are the material constants of

viscoplasticity; _ and _" are constants relating to the degree of anisotropy.

The model expressed in (1),(2),(3) and (4) must be supplemented by special

provisions allowing for stress reversals under cyclic loading conditions. It is expected that

in metallic composite materials, as with monolithic alloys, a reversal of the sign of stress

after unloading from an inelastic state is generally accompanied by a marked decrease in

hardening. In the absence of detailed information on the inelastic cyclic response of

metallic composites, we shall adopt the same provisions for stress reversals as are outlined

in [ 1,2 ] for monolithic alloys.

EQUAL LONGITUDINAL AND TRANSVERSE SHEAR _x= 0

A simpler form of the model results when the inelastic response in longitudinal and

transverse shear can be idealized as being equal. This corresponds to taking the material

parameter _ = 0. In this case (1) and (2) remain the same, however, (3) and (4) become

_ = _/3(J2 _3_j7 2 ) (5)

Fo" = so _l (l(3Do. -6,j) (6)and

respectively.

We shall use this simplified form in the application to W/Cu. It is interesting to note that

the effective stress (5) relates directly to the anisotropic yield function used by Robinson

and Pastor [ 4 ] in the limit analysis of a metallic composite ring.

FULL ISOTROPY _ = 0 AND _ = 0

Additionally taking _" = 0 the model reduces to the fully isotropic form of Bodner

[1,2]; (5) and (6) reduce to

_= 3_ 2 (7)



and L =s,j (S)

As the characterization of the Bodner model is based on uniaxial testing, we

consider the uniaxial form of the isotropic model represented by (1),(2), (7) and (8). Thus,

[ 1(zY"]
J

(9)

Z = re(Z, - Z)grk (10)

The constants

ko,n, Zs,m and Zo, (11)

are found by correlating calculated responses based on (9) and (10) with tensile data

obtained at strain-rates and temperatures of interest. Details of the established

characterization procedure for the isotropic Bodner model are discussed in [2].

UNIAXIAL: LONGITUDINAL (0 °) STRESS

We return to the simplified (_ = 0) anisotropic form (1),(2),(5) and (6). Reduction

to uniaxial stress along the longitudinal (0 °) fiber direction gives

k_; exp
oeo

(12)

2" =m'(Z_-Z')_e (13)

with constants &*o,n,Z_,m" and Z o (14)

We note that (12) and (13) with the constants (14) are identical in form to (9) and

(10) with the constants (11). Thus, we can use the same characterization procedure on the

anisotropic material under 0 ° testing to get the constants (14) as is used on the isotropic

Bodner model to get the constants (11). As indicated earlier, this procedure is well

established [2].
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The constants (14) for 0 ° stress relate to those of the multiaxial model (1),(2),(5)

and (6) as follows:

Fig. 1 shows the dependence of the uniaxial flow stress parameter m _
Z" Z

under 0 °

stress on the strain rate parameter -:7. =  o4i-¢
for different values of the constant n.

With _"= 0 (isotropy) Fig. 1 reduces to that given in [ 2 ].

Thus, through (15), the multiaxial model is totally specified once the constants

(14) have been determined by 0 ° testing and the value of the anisotropy parameter _" is

known. Determination of _" will be discussed in a later section.

UNIAXIAL: TRANSVERSE (90 °) STRESS

Next, we specialize the (2_= 0) model (1),(2),(5) and (6) for transverse (90 °)

stress.There results

o%

(16)

z" =m'( ZT - Z')o (17)

with constants ko,n,Z'f ,m"an d 7.o (18)

Again, the form of (16),(17) with (18) is identical to that of the uniaxial Bodner model

(9),(10) with (11), so the same characterization procedure also can be applied to 900

testing. The resulting constants (18) for 900 relate to the constants in the multiaxial model

(1),(2),(5) and (6) according to:



g$

(19)

O" O"

A plot identical to Fig. 1 but for 900 stress is obtained by replacing _-c by _- and .k. by
Co

... Again, the multiaxial model is totally specified once the constants (18) are
Co

determined from 900 testing and the value of _" is known.

DETERMINATION OF

Comparing (15) and (19) that relate the constants for 0 ° and 900 testing to those

of the multiaxial model, it is apparent that _ is specified once the sets of constants (14)

and (18) are known. However, both sets need not be complete. If, for example, we know

all the constants (14) from 0° testing and have only, say Z_' from 90 o testing, g" can be

determined from

Z_'_ 1-_"

z;
(20)

We select Z o (the initial value of the internal variable Z") in this context because it is one

of the most easily obtained constants in the characterization procedure. The same could be

done using the constant i%, in which case _" would be obtained from

(21)

We note from (20) and (21) that
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_TZ_'= _-_Z° (22)

Evidently, ( is over specified in that four equations like (20) and (21) can be

written fi'om (15) and (19). It is possible that one value of( cannot be found satisfying all

four equations to a desired degree of accuracy. Our recourse then is to reexamine some of

the idealizations made in the simplified (_ = 0) model (1),(2), (5) and (6). An obvious

consideration is to remove the condition _ = 0 leaving the degree of anisotropy to depend

on both _ and (; the model is then (1),(2),(3) and (4), as originally stated. The simple

characterization procedure just outlined, based directly on that established for the Bodner

model, is not generally applicable to the more comprehensive model. An analogous but

more involved procedure has been identified for this model; unavoidably it requires

transverse and longitudinal shear testing to determine _. As this kind of test data on

metallic composites, in particular W/Cu, are not readily available at present, we shall

continue to assume _ = 0 and to develop and apply the simplified model (1),(2),(5) and

(6). Development and characterization of the more general anisotropic model including

both _ and ( will be addressed as a continuation of this research.

In the context of the simplified (_ = 0) model, Figs. 2-4 show the influence of the

anisotropy parameter _" on the transverse (90 °) stress response. Although these figures

relate to transverse behavior, they are shown in terms of the uniaxial flow stress parameter

cr and the strain rate parameter _. for comparison with the 0 ° response. Figs. 2,3 and
Z ° e o

4 correspond to _" = 0.3, 0.6 and 0.9, respectively. We see that the 900 flow stress

parameter decreases as g" increases for fixed values of strain rate and n. In particular, for

_"= 0.9 and n = 2 (Fig. 4), __.= 0.2 when -:-;-_:= 10 -2. Comparing this with longitudinal
Z- o¢o

cr

(0 °) stressing for n = 2 (Fig. 1), _-7 _- 0.6 when -:-r = 10 -2. Thus, for the degree of
_'o

anisotropy _"= 0.9 and with n = 2, the ratio of the flow stress for 0 ° to that for 900 is

,_ 3 for an inelastic strain rate of -7-c = 10-2.

_'o



TEMPERATURE DEPENDENCE

As with the isotropic Bodner model, the primary influence of temperature on the

C where k is
flow stress is taken through the parameter n(T). If we take n(T) = k-T

Boltzmann's constant, a thermal activation form results with the anisotropic activation

energy function

2C

With full isotropy, _ = _" = 0, (3) or (5) reduce to (7), and (23) becomes the activation

energy function specified in [ 2 ].

Fig. 5 shows the dependence of the flow stress parameter for 0o uniaxial stress on

1 _ 7' for different values of the strain rate parameter. Again, for 4" = 0 (isotropy) this
n CIk

plot reduces to its counterpart given in [ 2 ]..

It may prove necessary to include temperature dependence in other material

parameters, e.g., Z o ( the initial value of the internal variable). However, in the application

to W/Cu we shall attempt to limit temperature dependence to the parameter n.

FIBER VOLUME FRACTION p

The characterization procedure described above is defined as being applicable to a

composite material having the reference fiber volume fraction Po. A composite having the

same constituents but a different fiber volume fraction ,o can be viewed as a distinct

material and the same characterization procedure applied to it, yielding another set of

constants and parameters. In principle, this can be repeated for a range of fiber volume

fractions of interest with the resulting constants fit in some optimal sense as functions of

,o. This may be necessary in practice because the precise fiber volume fraction is often not

known a priori for a structure fabricated from a composite material. Indeed, p may vary

from point to point in a given body or structure. A constitutive model to be used in the

analysis of such structures must allow for variations in p.

To avoid a large amount of tedious and costly characterization testing, we can

appeal either to micromechanical studies to provide guidance of how the overall

composite response changes with fiber volume fraction p, or we can attempt to limit the



amountof phenomenological testing by judiciously identifying the key parameters in which

the p dependence should reside. Here, we pursue the latter course within the context of

the simplified _ = 0 model (1),(2),(5) and (6).

Observations based on data for two fiber volume fractions of a W/Cu composite

suggest that the primary dependence on p should be taken in the state variable (or stress

history parameter) Z'and in the anisotropy parameter _'. These dependencies are taken as:

Z'(p) = Z'(po)W(p) (24)

((p) = (25)

where po is the reference fiber volume fraction and W and • can be considered

nonlinear rules of mixture. Of course, Z'(po) in (24) is identical to Z" in (12)-(14).

Consistent with the basic features of the model, exponential forms are chosen for

and • as follows:

Z'(O)  (1-exp(- _a_p.)]+ Z'(O) (26)V(p)= 1 Z'(po))k po-p ) Z'(po)

q)(p) = 1 - exp( /3P ) (27)
po-P

in which a and/3 are constants.

From (24)-(27), we see that as p ---) po , Z" _ Z'(po) and (--). ((Po), relating

as earlier, to the reference volume fraction. As p--_ 0 (no fibers), Z" --_ Z" (0)

corresponding to the matrix material, and _" _ 0 corresponding to isotropy.

Figs. 6 and 7 are plots of W(,o)vs. P--P--and O(p)vs. P--_-, respectively, where for
Po Po

illustration we have taken Z'(O)/Z'(po)= 1/3, a = 1/2 and fl= 3. Fig. 8 shows the

cr k

dependence of the flow stress parameter -_- on the strain rate parameter -:;- for n = 2 and
60

2 1

for three values of the fiber volume fraction p = po, -_po and -_po. Values of the other

relevant parameters in Fig. 8 are taken as in Figs. 6 and 7. The three upper curves in Fig. 8

are for longitudinal (0 °) stress; the three lower curves are for transverse (90 °) stress. As

expected intuitively, both the 0 ° and 900 flow stress parameters decrease with decreasing



fiber volumefraction. Also as expected, the change in the flow stress with p is

considerably greater for 0 ° than for 900 ( _ 4 times greater in this example ).

The additional constants introduced in (24)-(27), viz., Z*(0) (or equivalently,

Zo(0 ) and Z;(0)- the initial and saturation values of the state variable for the matrix ), a

and ,8, must be determined using experimental results from tests on, at least, one fiber

volume fraction other than the reference Po •

SUMMARY AND CONCLUSIONS

A simple and tractable, transversely isotropic viscoplasticity model is developed by

extending the well known isotropic Bodner model. The model retains the simplicity of the

Bodner theory regarding the relative ease with which the material constants and

parameters can be determined. It is capable of representing strong initial anisotropy yet is

based on a single scalar state variable under the assertion that induced anisotropy through

directional or kinematic hardening can be ignored relative to the strong initial anisotropy.

Like the original Bodner model, the anisotropic model is particularly effective in

representing rate-sensitive, non isothermal viscoplastic responses typical of the histograms

of rocket engines, e.g., the SSME.

A procedure for determining the constants of the model is discussed and is shown

to be essentially identical to the well established characterization procedure for the Bodner

model. Temperature dependence is taken as in the original Bodner theory. Account is

made of varying fiber volume fraction by including its dependence specifically in the state

variable Z ( stress history parameter) and the anisotropy parameter 6".

Application of the model to a W/Cu composite is in progress. The results

specifying the material constants and parameters will be reported as a sequel to this report.
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